翻訳と辞書
Words near each other
・ Lemna gibba
・ Lemna minor
・ Lemna minuta
・ Lemna trisulca
・ Lemna valdiviana
・ Lemnia
・ Lemnia River
・ Lemnian Athena
・ Lemnian deeds
・ Lemnian language
・ Lemniscate
・ Lemniscate (album)
・ Lemniscate (disambiguation)
・ Lemniscate of Bernoulli
・ Lemniscate of Gerono
Lemniscatic elliptic function
・ Lemniscia
・ Lemniscia calva
・ Lemniscia galeata
・ Lemniscia michaudi
・ Lemniscus
・ Lemniscus (anatomy)
・ Lemnitz
・ Lemnoideae
・ Lemnos
・ Lemnos (regional unit)
・ Lemnos International Airport
・ Lemnos, Victoria
・ LEMO
・ Lemoa


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Lemniscatic elliptic function : ウィキペディア英語版
Lemniscatic elliptic function
In mathematics, a lemniscatic elliptic function is an elliptic function related to the arc length of a lemniscate of Bernoulli studied by Giulio Carlo de' Toschi di Fagnano in 1718. It has a square period lattice and is closely related to the Weierstrass elliptic function when the Weierstrass invariants satisfy ''g''2 = 1 and ''g''3 = 0.
In the lemniscatic case, the minimal half period ω1 is real and equal to
:\frac)},\qquad
e_2=0,\qquad
e_3=-\tfrac.

The case ''g''2 = ''a'', ''g''3 = 0 may be handled by a scaling transformation. However, this may involve complex numbers. If it is desired to remain within real numbers, there are two cases to consider: ''a'' > 0 and ''a'' < 0. The period paralleogram is either a "square" or a "diamond".
==Lemniscate sine and cosine functions==
The lemniscate sine and cosine functions ''sl'' and ''cl'' are analogues of the usual sine and cosine functions, with a circle replaced by a lemniscate. They are defined by
:\operatorname(r)=s
where
: r=\int_0^s\frac(r)=c
: r=\int_c^1\frac\int_0^1\frac{\sqrt{1-t^4}}= 0.8346\ldots.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Lemniscatic elliptic function」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.